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Evolution and Functional Impact of
Rare Coding Variation from Deep
Sequencing of Human Exomes
Jacob A. Tennessen,1* Abigail W. Bigham,2*† Timothy D. O’Connor,1* Wenqing Fu,1

Eimear E. Kenny,3 Simon Gravel,3 Sean McGee,1 Ron Do,4,5 Xiaoming Liu,6 Goo Jun,7

Hyun Min Kang,7 Daniel Jordan,8 Suzanne M. Leal,9 Stacey Gabriel,4 Mark J. Rieder,1

Goncalo Abecasis,7 David Altshuler,4 Deborah A. Nickerson,1 Eric Boerwinkle,6,10

Shamil Sunyaev,4,8 Carlos D. Bustamante,3 Michael J. Bamshad,1,2‡ Joshua M. Akey,1‡
Broad GO, Seattle GO, on behalf of the NHLBI Exome Sequencing Project

As a first step toward understanding how rare variants contribute to risk for complex diseases,
we sequenced 15,585 human protein-coding genes to an average median depth of 111× in
2440 individuals of European (n = 1351) and African (n = 1088) ancestry. We identified over
500,000 single-nucleotide variants (SNVs), the majority of which were rare (86% with a minor
allele frequency less than 0.5%), previously unknown (82%), and population-specific (82%). On
average, 2.3% of the 13,595 SNVs each person carried were predicted to affect protein function
of ~313 genes per genome, and ~95.7% of SNVs predicted to be functionally important were
rare. This excess of rare functional variants is due to the combined effects of explosive, recent
accelerated population growth and weak purifying selection. Furthermore, we show that large
sample sizes will be required to associate rare variants with complex traits.

Understanding the spectrum of allelic var-
iation in human genes and revealing
the demographic and evolutionary forces

that shape this variation within and among pop-
ulations are major aims of human genetics re-
search. Such information is critical for defining
the architecture of common diseases, identifying
functionally important variation, and ultimately
facilitating the interpretation of personalized dis-
ease risk profiles (1–3). To date, surveys of human
variation have been dominated by studies of single-
nucleotide polymorphisms (SNPs) genotyped
using high-density arrays composed of common

variants (4–6). Although these projects have sub-
stantially improved our knowledge of common
allelic variation and enabled genome-wide associ-
ation studies (GWAS), they have been generally
uninformative about the population genetics
characteristics of rare variants, defined here as a
minor allele frequency (MAF) of less than 0.5%.

Rare genetic variants are predicted to vastly
outnumber common variants in the human ge-
nome (7, 8). By capturing and sequencing all
protein-coding exons (i.e., the exome, which com-
prises ~1 to 2% of the human genome), exome
sequencing is a powerful approach for discov-
ering rare variation and has facilitated the ge-
netic dissection of unsolved Mendelian disorders
and the study of human evolutionary history (9–14).
Rare and low-frequency (MAF between 0.5 and
1%) variants have been hypothesized to explain
a substantial fraction of the heritability of com-
mon, complex diseases (15). Because common
variants explain only a modest fraction of the
heritability of most traits (16, 17), the National
Heart, Lung, and Blood Institute (NHLBI) recent-
ly sponsored the multicenter Exome Sequencing
Project (ESP) to identify previously unknown genes
and molecular mechanisms underlying complex
heart, lung, and blood disorders by sequencing
the exomes of a large number of individuals mea-
sured for phenotypic traits of substantial public
health importance (e.g., early-onset myocardial
infarction, stroke, and body mass index).

Data generation and variant discovery. A
total of 63.4 terabases of DNA sequence was
generated at two centers with three complemen-
tary definitions of the exome target and two dif-
ferent capture technologies (18). We sequenced
samples from 15 different cohorts in the ESP to
an average median depth of 111× (range of 23×
to 474×).We found no evidence of cohort- and/or
phenotype-specific effects, or other systematic
biases, in the analysis of the filtered single-
nucleotide variant (SNV) data (figs. S1 to S7).
Exomes from related individuals were excluded
from further analysis (fig. S8), resulting in a data
set of 2440 exomes. We inferred genetic ancestry
by using a clustering approach (18) and, unless
otherwise noted, focused the remaining analyses
on the inferred 1351 European-American (EA)
and 1088African-American (AA) individuals.We
subjected the 563,698 variants in the intersection
of all three capture targets to standard quality-
control filters (18), resulting in a final data set of
503,481 SNVs identified in 15,585 genes and
22.38 Mb of targeted sequence per individual. We
assessed data quality and error rates by several
orthogonal methods (18). About 98% (941/961)
of all variant sites that were experimentally tested
were confirmed, including 98% (234/238) of sin-
gletons, 98% (678/693) of nonsingleton SNV
sites with a MAF < 10%, and 97% (29/30) of
SNV sites with a MAF ≥ 10%.

The vast majority of coding variation is
rare and previously unknown. We observed a
total of 503,481 SNVs and 117 fixed non-
reference sites, of which 325,843 and 268,903
were found in AAs and EAs, respectively (fig.
S9A). Excluding singletons, ~58% of SNVs were
population-specific (93,278 and 32,552 variants
were uniquely observed in AAs and EAs, respec-
tively), and the vast majority of these variants
were rare (fig. S9B). Most SNVs (292,125 or
58%) were nonsynonymous, including 285,960
missense variants and 6165 nonsense variants
(fig. S9C). Synonymous variants accounted for
38% (188,975) of all SNVs (fig. S9C), with the
remaining 4% of SNVs (22,381) located in either
splice sites or targeted noncoding regions. The
majority of SNVs (411,084; 82%) were previously
unknown, with more novel SNVs observed in
AAs (240,341) than in EAs (204,415), although
the proportion of SNVs that were novel was
higher in EAs comparedwithAAs (76.0% versus
73.8%; c2 = 398.3, df =1,P < 10−16). About 98%
(402,813) of novel SNVs were rare, and 48.9%
of all novel, rare SNVs were nonsynonymous.

TheAA and EA sample sizes provided ~90%
power to detect variants with a MAF ≥ 0.1% and
nearly 100% power to detect common variants
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(MAF ≥ 5%) (tables S1 and S2 and fig. S10).With
our large sample size, the proportion of singletons
identified rapidly decreased to a nearly constant
rate of new singleton discovery such that each
additional exome contributed ~200 novel SNVs
(fig. S11). The number of SNVs per gene rapidly
stabilized for common variants in small sample
sizes (~100 individuals), whereas the number of
rare variants continued to increase linearly (fig. S12).

Of the total SNVs, 57% (285,857) were sin-
gletons, and SNVs with three or fewer minor
alleles accounted for 72%of all variants (fig. S9D).
The proportion of singletons observed in AAs
(49.3%, n = 140,818) was lower than that ob-
served in EAs (50.7%, n = 144,821), but the
overall site frequency spectra (SFS) and the SFS
for both AAs and EAs are highly skewed, ex-
hibiting a large excess of rare variants relative
to the standard neutral model (19) (fig. S9D). The
skew of the SFS was greater for EAs than AAs,
and, at equal sample sizes, the odds that a SNV

was a singleton were 1.7 times greater for EAs
than AAs. Consistent with these observations,
Tajima’s D was highly negative for both EAs
(–2.12) and AAs (–2.10) and dropped precipitous-
ly as sample size increased (fig. S9E), highlighting
that sequencing a large number of individuals
provides unique information about recent demo-
graphic history (13, 20, 21).

To identify putatively functional variation, we
applied four popular methods applicable to non-
synonymous variants (PolyPhen2, SIFT, a like-
lihood ratio test, and MutationTaster) and three
conservation-based methods applicable to all
types of variants [GERP, PhyloP, and a novel
population genetics approach that combines con-
servation information with the SFS that we desig-
nate SFS-Del (18)]. About 47% of all SNVs (74%
of nonsynonymous and 6% of synonymous
variants) are predicted to be deleterious by one
or more method (Fig. 1A); however, overlap
among methods is modest. For example, only

1% of nonsynonymous variants are predicted
to be functional by all seven methods, and var-
iants predicted by any single approach are likely
to have a high false-positive rate (Fig. 1A). There-
fore, we used a conservative majority rule ap-
proach and deemed nonsynonymous variants
predicted by at least four of the seven applicable
methods and synonymous sites predicted by at
least two of the three applicable methods (fig.
S13) to be putatively functional. In total, 16.9%
of SNVs (85,224) meet this criteria, of which
81,170 were nonsynonymous SNVs. About 95.7%
(81,555) of all SNVs conservatively predicted to
be functional were rare, and the odds ratio (OR)
that rare variants are functional compared with
variants with a MAF > 0.5% is 4.2 [95% con-
fidence interval (CI) from 4.0 to 4.3; Fisher’s ex-
act test; P < 10−15), underscoring the potential
impact of rare variants on health-related traits.

Patterns of coding variation by gene and
pathway. The median number of SNVs per gene

Fig. 1. Characteristics of protein-coding variation in humans. (A) Number of
nonsynonymous SNVs predicted to be functionally important as a function of
seven different methods (18). (B) Distributions of p across the exome in AAs
(blue) and EAs (red). The value of p for each gene is shown as a vertical line.

The middle section shows the difference in diversity between EA and AA (Dp =
pEA – pAA), scaled between 0 and 1. (C) Distributions of the proportion of total
diversity, p, attributable to SNVs with different MAFs in the EA and AA
samples. The x axis is binned in increments of 0.5%.
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was 24, ranged between 0 and 761, and was sig-
nificantly different (Wilcoxon-rank sum test; P <
10−15) between AAs (median of 16, range from
0 to 566) and EAs (median of 13, range from 0
to 410). Mutational target size plays an important
role in governing differences in polymorphism
across loci, because gene length accounts for 76.6%
of variation in the number of SNVs across genes
(95% bootstrap CI = 73.9 to 79.1%; P < 10−15).

The proportion of rare variants per base pair (bp)
in each gene was higher (mean = 2.015%; 95%
range = 0.621 to 4.057%) than that of common
variants (0.334%; 95% range = 0.000 to 1.143%),
and the average ratio of rare to common alleles per
bp was ~6:1. We identified 110 genes that showed
an unusually high proportion of rare variants, in-
cluding six histone genes that are likely subject to
greater selective constraint (table S3). The number
of putatively functional variants also variedwidely
across genes (fig. S14B), ranging from 0 to >100,
with amedian of two in both EA andAA samples.

Nucleotide diversity (p) varied considera-
bly among genes, ranging from ~0 to 1.319%

per bp (mean = 0.042%; Fig. 1B). Mean p in
AAs (0.047%) was significantly higher (P <
10−15, paired t test) than p in EAs (0.035%),
and p per gene was modestly correlated (r2 =
63%; P value < 10−15) between AAs and EAs
(fig. S15). Rare variants account for 4% of total
diversity, more than any other MAF bin (of
width 0.5%) in both EAs and AAs (Fig. 1C).
Rare and low-frequency SNVs comprise ~13
and 20% of total diversity in the EA and AA
samples, respectively (Fig. 1C). In both samples,
estimates of p were highest for human lym-
phocyte antigen (HLA) loci and other genes re-
lated to immune function, such as DEFB108B,
and olfactory receptors (Fig. 1B). When genes
were grouped into functional categories by KEGG
(Kyoto Encyclopedia of Genes and Genomes)
pathway, estimates of p were highest for path-
ways related to immune function and olfaction
and lowest for pathways involved in basic cel-
lular processes (fig. S16).

Abundance of rare variation explained by
human demographic history. The excess of rare

variation across the exome is consistent with ex-
plosive human population growth (22). To in-
vestigate this further, we used an out-of-Africa
(OOA) demographic model (23) to predict the
expected joint distribution of allele frequencies
between EA and AA samples via a diffusion
approximation (18). The OOA model, modified
to account for admixture, captures prominent fea-
tures of the joint frequency distribution. How-
ever, both populations contain more rare variants
than predicted by this model (18) (Fig. 2), most
likely because of rapid population growth in the
past few thousand years that is undetectable with
smaller sample sizes (fig. S9E). We revisited the
demographic model from Gravel et al. (23), al-
lowing for a reduced initial European expansion
that is compensated for by accelerated growth
starting after the split of European and Asian
populations. Similarly, we introduced a phase
of exponential growth in the African population
starting at the same time. The resulting demo-
graphic model is an improved fit to the synon-
ymous site-frequency spectrum (18) (Fig. 2B)

Fig. 2. Deep sequencing
reveals increases of recent
population size. (A) Joint SFS
predicted from different
demographic models (top)
compared with the observed
data (bottom), displaying al-
lele counts between 0 and
100 chromosomes. The three
models are (left) an OOA
model without admixture
derived from the 1000 Ge-
nomes data, (middle) the
samemodel with the AA pan-
el modeled as an 80%:20%
admixture between African
and European lineages, and
(right) the same model fur-
ther modified to account for
recent growth acceleration.
Anscombe residuals are dis-
played, with regions showing
more variants than predicted
by the model in blue and
less in red. Binswith expected
counts <1 are displayed
as white in all graphs. (B)
Schematic representation
(not to scale) of the inferred
demographic model and
parameters (18). kya, thou-
sand years ago. (Inset) Com-
parison of the observed SFS
to that predicted by the
demographic model incor-
porating recent accelerated
growth.
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and strongly supports a recent, dramatic accel-
eration of population growth. The maximum-
likelihood time for accelerated growth was 5115
years ago (Fig. 2B).

The EA population growth, previously es-
timated at 0.38% per generation, is now mod-
eled at the first step as 0.307% (SD of T0.003%),
followed by explosive growth of 1.95% (SD
T0.03%) over the past 5115 years. The growth in
the AA sample during this same period is
estimated to be 1.66% (SD T0.03%). The esti-
mated standard deviations (18) are quite small,
and, for data sets of this scale, it is likely that
other sources of uncertainty (e.g., mutation rate
or model specification) play a more important
role than finite genome fluctuations. The final
population sizes in this model are lower than
current census sizes, and we speculate that larger
sample sizes will be necessary to fully capture
the signature recent growth-rate expansion im-
parted on patterns of DNA sequence variation.

Impact of natural selection on rare coding
variation. To investigate the effect of purifying
selection on nonsynonymous variants, we exam-
ined the relationship between MAFs of non-
synonymous SNVs and functional prediction
scores from SIFT, Polyphen2, a likelihood ratio
test statistic, and MutationTaster (18). Each pre-
diction score showed a significant (P < 10−16)
negative correlation with MAF in the combined
sample (Fig. 3A) as well as in each sample sepa-
rately (18). Moreover, the proportion of predicted

deleterious changes was negatively correlated
with MAF (Fig. 3B). We next mapped 31,115
nonsynonymous SNVs to known protein struc-
tures and classified them into different structural
categories (Fig. 3C) (18). Nonsynonymous SNVs
in all categories, except sites that contact other
protein chains, showed a significant excess of
rare variants compared with synonymous sites
(Fig. 3C), as expected if subjected to purifying
selection. The relative effect sizes show that cat-
egories of variants with direct functional im-
portance (e.g., active sites, enrichment of 2.8%;
ligand-binding residues, enrichment of 1.7%) are
under stronger constraint than categories im-
portant for structural stability. The exception is
residues that form side-chain hydrogen bonds,
which show a 2.8% enrichment of rare variants,
suggesting that hydrogen bonds make a large
contribution to protein folding and stability.

To investigate selective constraint acting on
synonymous variants, we calculated the correla-
tion between the derived allele frequency (DAF)
of synonymous variants and their corresponding
change in the relative adaptiveness value, or w
score (24). The w score summarizes information
about selective constraints on the efficiency of
codon-anticodon coupling and the number of
tRNA gene copies in the genome. Negative val-
ues indicate synonymous variants that may de-
crease translational efficiency or accuracy. We
found a weak but significant positive correlation
between DAF and change in w score (r = 0.03;

P < 10−16), consistent with the action of purifying
selection (Fig. 3D).

We examined selective sweeps by identifying
genes with high ratios of divergence (human-
specific lineage substitutions relative to chimp
and macaque) compared with polymorphism
within humans, which are predicted to increase
between-species divergence and decrease within-
population diversity. We identified genes in which
the ratio of nonsynonymous to synonymous di-
vergence was high relative to the ratio of non-
synonymous to synonymous SNVs (25).We also
identified genes with either a high or low ratio
of p in AAs relative to p in EAs and genes with
diversity estimates in the bottom 20th percent-
ile in which at least one SNV had an FST ≥ 0.3.
In total, 114 genes met one or more of these crite-
ria (table S4). About 25% of these genes have
been implicated as targets of positive selection
(26). The 114 candidate selection genes were sig-
nificantly enriched (false discovery rate ≤ 5%) for
five KEGG pathways, including olfactory trans-
duction and metabolic pathways (table S5).

Implications for disease and personal ge-
nomics. We evaluated gene-specific power of
rare variant association studies in the EA and AA
samples. We used Fisher’s exact test, a robust
approach for aggregate testing of rare variation at
a locus (27), to determine the power to detect an
association for each gene harboring rare causal
variants with ORs of 1.5 or 5 in 400 cases and
400 controls (18). In both the EA andAA samples,

Fig. 3. Signatures of purify-
ing selection in protein-coding
SNVs. (A) Relationship be-
tween the evidence that a
variant is functionally im-
portant and MAF for four
different methods. (B) Rela-
tionship between the propor-
tion of putatively functional
variants and MAF for the
same predictions as in (A).
(C) Comparison of the num-
ber of rare SNVs (orange)
andenrichment of rareor non-
synonymous SNVs (brown)
located in different protein
structural categories [P val-
ues were calculated by a
permutation test (18)]. (D)
Relationship between aver-
age change of w score of syn-
onymous variants and DAF.
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cases and controls were sampled from 1000
individuals selected to minimize any confound-
ing effects of population stratification (fig. S17),
with power calculations assuming a type I error
rate of a = 0.001. In each sample, power varies
widely across loci, and <5% of genes achieve
80% power even when relatively strong effects
(OR = 5) are modeled (Fig. 4A); when causal
variants are assumed to have an OR of 1.5, no
genes achieve 80%power (fig. S18). Furthermore,
although the AA sample has uniformly higher
power per gene relative to the EA sample (Fig.
4A), caution is warranted because this is largely
a function of our modeling assumptions (18).

The mean number of SNVs per exome (homo-
zygous nonreference and heterozygous geno-
types) was 13,595, and ~66% (8893) of these
sites were heterozygous. As expected, AAs had
significantly more SNVs per exome than EAs

(15,073 versus 12,406, Mann-Whitney test, P <
10−16), which is true for all classes of sites (Fig.
4B). Moreover, on average, each individual pos-
sessed 35 nonsense variants and was homozygous
for at least one nonreference nonsense variant;
318 individuals (181 AAs and 137 EAs) were
compound heterozygotes for nonsense SNVs.
The mean number of novel SNVs per individ-
ual was 549 overall, but AAs had more than
twice the number of novel SNVs compared
with EAs (762 versus 362, respectively;P= 1.9 ×
10−7 correcting for differences in the mean num-
ber of SNVs between populations). The fraction
of overall variation that was novel in AAs was
higher than in EAs (5 and 3%, respectively; P <
10−16). Lastly, although most protein-coding
variants were rare in the full AA and EA popu-
lation samples, the majority of SNVs found in
an average individual were common (Fig. 4C).

We next examined the distribution of func-
tionally important variation, functionally impor-
tant singletons, and the proportion of functionally
important SNVs per individual (Fig. 4D) by using
both conservative and more liberal criteria (18).
On average, individuals possess between 318 and
580 predicted functional protein-coding SNVs de-
pending on how functional variants are defined,
with slightly more in AA than in EA individuals
(Fig. 4D). The average number of predicted
functional singletons per individual was more
robust to the definition of functional variants,
ranged from 25 to 31, and was slightly higher
in AA compared to EA individuals (Fig. 4D). In
both cases, however, there was more variation
among individuals than between populations.

Lastly, the average proportion of predicted
functional SNVs per individual varied between
2.3 and 4.2% (Fig. 4D). When the more liberal

Fig. 4. Power of rare variant association mapping and personal genomics
characteristics of protein-coding SNVs. (A) Distribution of gene-specific esti-
mates of power to map causal rare variants across 12,000 protein-coding
genes with at least three SNVs in the EA (red) or AA (blue) samples. Power
varied widely across loci, and <5% of genes (beige) achieve 80% power even
when relatively strong effects (OR = 5) are modeled. (B) Average number
(points) and range (vertical lines) of synonymous, missense, splice site, and
nonsense SNVs. (C) Average proportion of SNVs per individual that are rare

(MAF ≤ 0.5%), intermediate (0.5% <MAF < 5%), or common (MAF ≥ 5%) in
the population from which they were sampled. The proportions of rare and
intermediate frequency variants per individual are significantly higher
(Wilcoxon-rank sum test; P < 10−15) for putatively functional SNVs. (D) Violin
plots showing the distribution of number of functional SNVs, number of func-
tional singletons, and proportion of functional SNVs per individual in the EA
and AA samples. Darker and lighter shaded plots correspond to conservative
and more liberal definitions of functional variation, respectively.
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definition of functional SNVs was used, EA in-
dividuals have a significantly higher proportion
of predicted functional SNVs compared with
AA individuals (Fig. 4D; Wilcoxon-rank sum
test; P < 10−15), consistent with empirical esti-
mates and theoretical expectations because of
the lower EA effective population size (28, 29).
However, when the more conservative definition
was used, this pattern was reversed, and AA in-
dividuals have a significantly higher proportion
of predicted functional SNVs compared with
EA individuals (Fig. 4D; Wilcoxon-rank sum
test; P < 10−15). These results highlight how the
definition of functional variants can influence in-
ferences and underscore the importance of con-
tinued methodological development to robustly
identify functionally important variation. None-
theless, there was considerable rare genetic var-
iation among individuals that is predicted to be
functional, which could explain variability in dis-
ease risk and adverse drug response.

Conclusion. Our results have several im-
portant implications for human disease gene
mapping and personal genomics. In particular,
the vast majority of protein-coding variation is
evolutionarily recent, rare, and enriched for del-
eterious alleles. Thus, rare variation likely makes
an important contribution to human phenotypic
variation and disease susceptibility. However,
detecting the effects of rare variants requires
very large sample sizes, because the power to
detect an association is low for most human
genes. Accounting for the SFS on a gene-by-
gene basis should facilitate the development of
more powerful association tests. Additionally,
because most rare SNVs are population-specific,
replication of disease associations across pop-
ulations may be challenging. Lastly, as whole-
genome sequencing at high coverage becomes
increasingly feasible, statistical and experimental

methods that accurately identify functionally im-
portant protein-coding and regulatory variation
are needed to empower association studies, iden-
tify variants causally related to disease, and pro-
vide clinically actionable information.
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Interferometric Identification
of a Pre–Brown Dwarf
Philippe André,1* Derek Ward-Thompson,2 Jane Greaves3

It is not known whether brown dwarfs [stellar-like objects with masses less than the hydrogen-burning
limit, 0.075 solar mass (M☉)] are formed in the same way as solar-type stars or by some other process.
Here we report the clear-cut identification of a self-gravitating condensation of gas and dust with a
mass in the brown-dwarf regime, made through millimeter interferometric observations. The level of
thermal millimeter continuum emission detected from this object indicates a mass ~0.02 to 0.03 M☉,
whereas the small radius, <460 astronomical units, and narrow spectral lines imply a dynamical
mass of 0.015 to 0.02 M☉. The identification of such a pre–brown dwarf core supports models
according to which brown dwarfs are formed in the same manner as hydrogen-burning stars.

Brown dwarfs, defined as stellar-like ob-
jects with masses less than the hydrogen-
burning limit MBD = 0.075 solar mass

(M☉) (1), were first discovered in 1995 (2, 3).
They are now known to be almost as numerous as
hydrogen-burning stars (4–6), but their formation

mechanism remains a matter for debate (6, 7).
Either brown dwarfs form as a by-product of the
formation process of hydrogen-burning stars,
or they form just like normal stars (7), from the
collapse of self-gravitating condensations of gas
and dust called prestellar cores (8). The models in
the former category include models of multiple
star formation, where the lowest-mass member is
ejected before accreting too much mass (9, 10);
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